Inhaltsverzeichnis

1	Motivation und Ansatz	1
2	Spurengase und Einflüsse auf ihre Variabilität	5
2.1	Atmosphärische Spurengase	6
2.2	Hydroxyl-Radikale, Verweil- und Durchmischungszeit	
2.3	Standortspezifische Luftmassen-Einflüsse	
2.3.1	Lokal induzierte Vertikaltransporte	
2.3.2	Synoptisch bedingte Transportprozesse	
2.3.3	Europäische Emissionssituation	
2.3.4	Intrusionen	
3	Analyse der Stations-Messreihen	25
3.1	Kohlenmonoxid	26
3.2	Methan	29
3.3	Kohlendioxid	32
3.4	Stickoxide	35
3.5	Ozon	42
3.6	Radionuklide	45
3.6.1	Natürliche Radioaktivität	47
3.6.2	Beryllium-7	51
4	Modellvorstellung und Beschreibung der Filter	55
4.1	Die Idee der Fuzzy-Logic	56
4.2	Filter-Regelwerk	59
4.2.1	Filter 1 - Einfluss infolge Vertikaltransporten	60
4.2.2	Filter 2 - Einfluss infolge Transportprozessen	61
4.2.3	Filter 3 - Einfluss infolge Intrusionen	61
4.3	Fuzzifizierung	62
4.3.1	Filterparameter Messgröße	62
4.3.2	Filterparameter Trajektorienverlauf	72
4.3.2.1	Kriterium Konzentrationsänderung	73
4.3.2.2	Kriterium Aufenthaltshöhe	82
4.3.2.3	Verknüpfung der Kriterien	88
4.4	Fuzzy-Inferenz	92
4.5	Defuzzifizierung	. 102
4.6	Übersicht	105

ii Inhaltsverzeichnis

5	Datenbank-Tool mit Implementierung der Filterfunktionen	107
5.1	Datenbankkonzept	107
5.1.1	Database	109
5.1.2	Namenskonventionen	110
5.2	Menüstruktur des Software-Tools	111
5.2.1	Fuzzifizierung	111
5.2.2	Fuzzy-Inferenz	114
5.2.3	Defuzzifizierung	115
6	Filteranwendung und Auswertung	117
6.1	Kennzeichnung der Datensätze	117
6.1.1	Filter 1 - Einfluss infolge Vertikaltransporten	118
6.1.2	Filter 2 - Einfluss infolge Transportprozessen	124
6.1.3	Filter 3 - Einfluss infolge Intrusionen	131
6.1.4	Data-Flag für das Regelwerk	139
6.2	Bedeutung für die Repräsentanz der Messreihen	
6.2.1	Kohlenmonoxid	143
6.2.2	Methan	147
6.2.3	Kohlendioxid	151
6.2.4	Ozon	155
7	Zusammenfassung und Schlussbemerkung	159
	Literaturverzeichnis	163

Inhaltsverzeichnis iii

	Anhang	171
A.1	Erläuterung zu den Darstellungen im Anhang	173
A.1.1 A.1.2 A.1.3	Windrosen	173 173 174
A.2	Kohlenmonoxid	175
A.3	Methan	181
A.4	Kohlendioxid	187
A.5	Stickoxide	193
A.5.1 A.5.2 A.5.3	NO	195 200 205
A.6	Ozon	211
A.7	Natürliche Radioaktivität	217
A.8	Beryllium-7	223
A.9	Meteorologische Größen	225
A.9.1 A.9.2	Temperatur	225 227
	Curriculum Vitae	229
	Erklärung	231

Tabellen

Tab. 2-1	Zusammensetzung der wasserdampf- und aerosolfreien Atmosphäre6
Tab. 2-2	Spurengasanalytik an der Station Zugspitze
Tab. 2-3	Kenndaten der Emissions-Inventare COARSE2 und EMEP50 20
Tab. 3-1	Quellen und Senken für Kohlenmonoxid
Tab. 3-2	Quellen und Senken für Methan30
Tab. 3-3	Globales Kohlendioxid-Budget33
Tab. 3-4	Globale Emissionen von Stickoxiden NO_x in der Troposphäre36
Tab. 3-5	Konzentrationen von Stickoxiden NO_x in Bodennähe
Tab. 3-6	Einteilung der Natürlichen Radionuklide nach ihrem Ursprung 46
Tab. 4-1	Grenzwerte für das Filterparameter-Kriterium Aufenthaltshöhe 84
Tab. 4-2	Fuzzy-logische Verknüpfungs-Operatoren96
Tab. 6-1	Filter 1 - Anzahl der Datensätze mit Fuzzy-Output
Tab. 6-2	Filter 2 - Anzahl der Datensätze mit Fuzzy-Output
Tab. 6-3	Filter 3 - Anzahl der Datensätze mit Fuzzy-Output
Tab. 6-4	Regelwerk - Anzahl der Datensätze mit Data-Flag
Tab. 6-5	Kohlenmonoxid Monatsmittel und Streuung mit Filterung 143
Tab. 6-6	Methan Monatsmittel und Streuung mit Filterung148
Tab. 6-7	Kohlendioxid Monatsmittel und Streuung mit Filterung 152
Tab. 6-8	Ozon Monatsmittel und Streuung mit Filterung156

Anhang

Tab. A.2-1	Kohlenmonoxid Statistik	176
Tab. A.2-2	Kohlenmonoxid Perzentile	176
Tab. A.2-3	Kohlenmonoxid Korrelationen	178
Tab. A.3-1	Methan Statistik	182
Tab. A.3-2	Methan Perzentile	182
Tab. A.3-3	Methan Korrelationen	184
Tab. A.4-1	Kohlendioxid Statistik	188
Tab. A.4-2	Kohlendioxid Perzentile	188
Tab. A.4-3	Kohlendioxid Korrelationen	190
Tab. A.5-1	NO Statistik	195
Tab. A.5-2	NO Perzentile	196
Tab. A.5-3	NO Korrelationen	198
Tab. A.5-4	NO _x Statistik	200
Tab. A.5-5	NO _x Perzentile	201
Tab. A.5-6	NO _x Korrelationen	
Tab. A.5-7	NO _v Statistik	
	NO _v Perzentile	
Tab. A.5-9	NO _v Korrelationen	
Tab. A.6-1	Ozon Statistik	
Tab. A.6-2	Ozon Perzentile	212
Tab. A.6-3	Ozon Korrelationen	214
Tab. A.7-1	Nat.Radioaktivität Statistik	218
Tab. A.7-2	Nat.Radioaktivität Perzentile	218
Tab. A.7-3	Nat.Radioaktivität Korrelationen	220
Tab. A.8-1	Beryllium-7 Statistik	224
Tab. A.8-2	Beryllium-7 Perzentile	224
Tab. A.9-1	Temperatur Statistik	226
Tab. A.9-2	Temperatur Perzentile	
Tab. A.9-3	Relative Feuchte Statistik	
Tab. A.9-4	Relative Feuchte Perzentile	228

Abbildungen

Abb. 2-1	Registrierte Windverhältnisse an der Station Zugspitze	12
Abb. 2-2	Windverhältnisse an der Talstation Garmisch	
Abb. 2-3	Luftmassen Einzugsgebiet mit zeitlicher Differenzierung	16
Abb. 2-4	Luftmassen-Einzugsgebiet mit vertikaler Differenzierung	17
Abb. 2-5	Emissions-Inventare EMEP50- und COARSE2-Grid	19
Abb. 2-6	Relative Feuchte Boxplots	
Abb. 3-1	Kohlenmonoxid Zeitreihe der Halbstundenwerte	28
Abb. 3-2	Kohlenmonoxid Boxplots	
Abb. 3-3	Methan Zeitreihe der Halbstundenwerte	31
Abb. 3-4	Methan Boxplots	31
Abb. 3-5	Methan Korrelationskoeffizienten mit CO	32
Abb. 3-6	Kohlendioxid Zeitreihe der Halbstundenwerte	34
Abb. 3-7	Kohlendioxid Boxplots	34
Abb. 3-8	Kohlendioxid Korrelationskoeffizienten mit CO, CH_4 und $\mathrm{NO}_\mathrm{y}.$	35
Abb. 3-9	Stickoxide Zeitreihe der Halbstundenwerte	
Abb. 3-10	Stickoxide Boxplots	40
Abb. 3-11	NO_v Korrelationskoeffizienten mit NO_x , O_3 , CO und $Nat.Radioakt$.	
Abb. 3-12	Ozon Zeitreihe der Halbstundenwerte	
Abb. 3-13	Ozon Boxplots	44
Abb. 3-14	Nat.Radioaktivität Zeitreihe der Halbstundenwerte	
Abb. 3-15	Nat.Radioaktivität Boxplots	49
Abb. 3-16	Nat.Radioaktivität Mittlere Tagesgänge, Sommermonate	49
Abb. 3-17	Nat.Radioaktivität Spurengaswindrose	
Abb. 3-18	Nat. Radioaktivität Korrelationskoeffizienten mit CO und $\mathrm{NO_{v}}.$	50
Abb. 3-19	Beryllium-7 Zeitreihe der Tagesmittelwerte	52
Abb. 3-20	Beryllium-7 Boxplots	
Abb. 4-1	Strukturschema eines Fuzzy-Logic-Prozesses	57
Abb. 4-2	Grenzwerte für den Filterparameter Messgröße	65
Abb. 4-3	Fuzzy-Sets für den Filterparameter Messgröße	67
Abb. 4-4	Fuzzifizierung für den Filterparameter Messgröße	71
Abb. 4-5	Fuzzy-Sets für das Kriterium Konzentrationsänderung	79
Abb. 4-6	Fuzzifizierung für das Kriterium Konzentrationsänderung	
Abb. 4-7	Fuzzy-Sets für das Kriterium Aufenthaltshöhe	
Abb. 4-8	Fuzzifizierung für das Kriterium Aufenthaltshöhe	88
Abb. 4-9	Fuzzy-logische Verknüpfungs-Operatoren	97
Abb. 4-10	Übersicht für den abzubildenden Fuzzy-Logic-Prozess	. 105
Abb. 5-1	Konzept der datenbankgestützten Realisierung	. 108
Abb. 5-2	Menüstruktur zur Fuzzifizierung der Größe A Messgröße	. 112
Abb. 5-3	Menüstruktur zur Fuzzifizierung der Größe B Trajektorienverlauf .	
Abb. 5-4	Menüstruktur zur Fuzzy-Inferenz	
Abb. 5-5	$Tabellenstruktur \ der \ Ergebnistabelle \ calc_DataFlag. \dots \dots$. 116
Abb. 5-6	Menüstruktur zur Defuzzifizierung	. 116
Abb. 6-1	Filter 1 - Fuzzy-Inputs und -Output	. 118
Abb. 6-2	Filter 1 - Anteil der Datensätze mit Fuzzy-Output	. 120

Abb. 6-3	Filter 1 - Tagezeitliche Abhängigkeit eines Data-Flag	122
Abb. 6-4	Filter 1 - Fuzzy-Inputs und -Output, Fallbeispiel Februar	123
Abb. 6-5	Filter 1 - Fuzzy-Inputs und -Output, Fallbeispiel Oktober	124
Abb. 6-6	Filter 2 - Fuzzy-Inputs und -Output	125
Abb. 6-7	Filter 2 - Anteil der Datensätze mit Fuzzy-Output	128
Abb. 6-8	Filter 2 - Fuzzy-Inputs und -Output, Fallbeispiel Oktober	129
Abb. 6-9	Filter 2 - Trajektorienverlauf, Fallbeispiel Oktober	130
Abb. 6-10	Filter 3 - Fuzzy-Inputs und -Output	131
Abb. 6-11	Filter 3 - Anteil der Datensätze mit Fuzzy-Output	135
Abb. 6-12	Filter 3 - Anzahl der Kalendertage mit Fuzzy-Output	136
Abb. 6-13	Filter 3 - Fuzzy-Inputs und -Output, Fallbeispiel Oktober	137
Abb. 6-14	Kohlenmonoxid Mittelwert-Abweichung für die Filterung	145
Abb. 6-15	Kohlenmonoxid Zeitreihe mit Filterung	146
Abb. 6-16	Methan Mittelwert-Abweichung für die Filterung	149
Abb. 6-17	Methan Zeitreihe mit Filterung	150
Abb. 6-18	Kohlendioxid Mittelwert-Abweichung für die Filterung	153
Abb. 6-19	Kohlendioxid Zeitreihe mit Filterung	154
Abb. 6-20	Ozon Mittelwert-Abweichung für die Filterung	157
Abb. 6-21	Ozon Zeitreihe mit Filterung	158

Anhang

Abb. A.2-1	Kohlenmonoxid Zeitreihe der Halbstundenwerte	$\dots 175$
	Kohlenmonoxid Boxplots	
Abb. A.2-3	Kohlenmonoxid Spurengaswindrose	175
Abb. A.2-4	Kohlenmonoxid Mittlere Tagesgänge	177
Abb. $A.2-5$	Kohlenmonoxid Grafik der Korrelationskoeffizienten	179
Abb. A.3-1	Methan Zeitreihe der Halbstundenwerte	181
Abb. A.3-2	Methan Boxplots	181
Abb. A.3-3	Methan Spurengaswindrose	181
Abb. A.3-4	Methan Mittlere Tagesgänge	183
Abb. A.3-5	Methan Grafik der Korrelationskoeffizienten	185
Abb. A.4-1	Kohlendioxid Zeitreihe der Halbstundenwerte	187
Abb. A.4-2	Kohlendioxid Boxplots	187
Abb. A.4-3	Kohlendioxid Spurengaswindrose	187
Abb. A.4-4	Kohlendioxid Mittlere Tagesgänge	189
Abb. A.4-5	Kohlendioxid Grafik der Korrelationskoeffizienten	191
Abb. A.5-1	Stickoxide Zeitreihe der Halbstundenwerte	193
Abb. $A.5-2$	Stickoxide Boxplots	194
Abb. A.5-3	NO Spurengaswindrose	195
Abb. A.5-4	NO Mittlere Tagesgänge	197
Abb. A.5-5	NO Grafik der Korrelationskoeffizienten	199
Abb. A.5-6	NO _x Spurengaswindrose	200
Abb. A.5-7	NO_x Mittlere Tagesgänge	202
Abb. A.5-8	NO_x Grafik der Korrelationskoeffizienten	204
Abb. A.5-9	NO _v Spurengaswindrose	205
Abb. A.5-1	$0\mathrm{NO_{y}^{'}}$ Mittlere Tagesgänge	207
Abb. A.5-1	$1\mathrm{NO_{v}^{'}}$ Grafik der Korrelationskoeffizienten	209
Abb. A.6-1	Ozon Zeitreihe der Halbstundenwerte	211
Abb. $A.6-2$	Ozon Boxplots	211
Abb. A.6- 3	Ozon Spurengaswindrose	211
Abb. A.6-4	Ozon Mittlere Tagesgänge	213
Abb. A.6- 5	Ozon Grafik der Korrelationskoeffizienten	215
Abb. A.7-1	Nat.Radioaktivität Zeitreihe der Halbstundenwerte	217
Abb. A.7-2	Nat.Radioaktivität Boxplots	217
Abb. $A.7-3$	Nat.Radioaktivität Spurengaswindrose	217
Abb. A.7-4	Nat.Radioaktivität Mittlere Tagesgänge	219
Abb. A.7- 5	Nat.Radioaktivität Grafik der Korrelationskoeffizienten	221
Abb. A.8-1	Beryllium-7 Zeitreihe der Tagesmittelwerte	223
Abb. A.8-2	Beryllium-7 Boxplots	223
Abb. A.9-1	Temperatur Zeitreihe der Halbstundenwerte	225
	Temperatur Boxplots	
Abb. A.9-3	Relative Feuchte Zeitreihe der Halbstundenwerte	227
Abb. A.9-4	Relative Feuchte Boxplots	227